skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Ren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    This paper develops an ensemble learning-based linearization approach for power flow with reactive power modeled, where the polynomial regression (PR) is first used as a basic learner to capture the linear relationships between the bus voltages as the independent variables and the active or reactive power as the dependent variable in rectangular coordinates. Then, gradient boosting (GB) and bagging as ensemble learning methods are introduced to combine all basic learners to boost the model performance. The inferred linear power flow model is applied to solve the well-known optimal power flow (OPF) problem. The simulation results on IEEE standard power systems indicate that (1) ensemble learning methods can significantly improve the efficiency of PR, and GB works better than bagging; (2) as for solving OPF, the data-driven model outperforms the DC model and the SDP relaxation in both accuracy, and computational efficiency. 
    more » « less